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The timescales for structural changes in a single crystal of bismuth after

excitation with an intense near-infrared laser pulse are studied with femtosecond

pump-probe X-ray diffraction. Changes in the intensity and reciprocal-lattice

vector of several reflections give quantitative information on the structure factor

and lattice strain as a function of time, with a resolution of 200 fs. The results

indicate that the majority of excess carrier energy that remains near the surface

is transferred to vibrational modes on a timescale of about 10 ps, and that the

resultant increase in the variance of the atomic positions at these times is

consistent with the overall magnitude of lattice strain that develops.

1. Introduction

An understanding of the atomic structure of a material is

usually considered a fundamental prerequisite to a study of

the physical mechanisms that underlie its properties. For this

purpose, X-ray crystallography is a proven, well established

tool for quantitatively measuring the positions of atoms in a

system with translational periodicity. Traditional methods of

crystallography are, however, usually restricted to the study of

time-averaged structures, where the timescale is at best of the

order of a few milliseconds. Since the typical vibrational

period of atoms is of the order of 100 fs for most materials,

these methods are usually unable to study many of the

structural changes that arise in a material that is not in ther-

modynamic equilibrium.

Recently, femtosecond pump-probe X-ray diffraction has

offered a way to study these non-equilibrium structures on

timescales approaching the fastest atomic vibrational periods

(Rousse et al., 2001; Sokolowski-Tinten et al., 2001; Linden-

berg et al., 2005; Fritz et al., 2007; Beaud et al., 2007). This

technique, suitable for studying quantitatively reproducible

dynamics, relies on creating a time-delayed sequence of two

short pulses: a ‘pump’ pulse that drives the material away from

equilibrium and thus stimulates a dynamical response and a

‘probe’ pulse of X-rays that interrogates the resulting struc-

ture at a particular time by diffraction from a set of lattice

planes. It is possible to trace out the structural response of a

system as a function of time by repeatedly applying these two

pulses to the material with different relative delays. The time

resolution relies on the duration of the two pulses and on the

precision of the synchronization between them. As such,

progress in this area is tied intimately to the development of

new sources of short-pulse hard X-rays (� ~ 1 Å) with good

synchronization to an optical laser system. Successful experi-

ments have used the X-rays emitted by Thomson scattering

from relativistic electrons (Schoenlein et al., 1996), laser-

produced plasmas (Rousse et al., 2001; Sokolowski-Tinten et

al., 2001) and synchrotron-based ‘slicing’ of the stored elec-

tron beam (Schoenlein et al., 2000; Beaud et al., 2007). Much

more intense pulses have been available on a test basis from a

linear accelerator source (Cavalieri et al., 2005), and very soon

hard X-ray beamlines at X-ray free electron lasers will offer

both much greater per-pulse intensity and shorter pulses

(McNeil, 2009).

In this report we focus on using short-pulse X-rays from a

synchrotron slicing source to study the structural response of a

single crystal of bismuth after it is driven strongly out of

equilibrium by the absorption of a short pulse from a near-

infrared laser. Bismuth is chosen here for its strong structural

response to electronic excitation, its fairly low frequency

vibrational modes and its relative structural simplicity. Despite

the tremendous amount of both experimental (Sokolowski-

Tinten et al., 2001; Fritz et al., 2007; Sciaini et al., 2009) and

theoretical (Fahy & Reis, 2004; Murray et al., 2007; Zijlstra et

al., 2006) work on the ultrafast dynamics of bismuth, some

aspects remain controversial. For example, questions have

arisen about the timescales for energy distribution and

relaxation of excited carriers and how this influences the

structural dynamics (Zijlstra et al., 2006; Johnson et al., 2009).

Although a complete resolution of this particular issue will



probably require a direct experimental measurement of the

time evolution of the electronic distribution, information on

the structural dynamics of bismuth can help to test assump-

tions about how the excited carriers eventually equilibrate

with the crystal lattice.

2. Overview of bismuth dynamics

At room temperature and pressure, bismuth crystallizes with a

rhombohedral A7 structure: space group R3m, a = 4.7461 Å, �
= 57.23�, and Wyckoff positions 2c at�ðz; z; zÞ with z = 0.2334

in equilibrium (Fischer et al., 1978; Cucka & Barrett, 1962).

This structure is only a small distortion from a higher-

symmetry simple cubic structure that would be achieved for �
= 60� and z = 0.25. The electronic band structure is a strong

function of the magnitude of the distortion from this higher-

symmetry structure: whereas the cubic structure would be a

metal with a half-filled conduction band, the symmetry-

breaking distortion pinches off the density of electronic states

at the Fermi energy and results in a lower overall free energy

(Peierls, 1991). This connection between the electronic density

of states and the structure has a large impact on the ultrafast

dynamics of bismuth.

2.1. Coherent optical phonon generation

Femtosecond pump-probe optical (Zeiger et al., 1992; Hase

et al., 1998) and X-ray (Sokolowski-Tinten et al., 2003; Fritz et

al., 2007; Beaud et al., 2007; Johnson et al., 2008) experiments

have shown that the absorption of a near-infrared laser pulse

with a duration significantly less than 300 fs results in a

coherent excitation of a �-point A1g-symmetry optical phonon

mode with a very large amplitude. The resulting ‘coherent

phonon’ is a classical-like oscillation of a vibrational mode,

analogous to coherent states of the electromagnetic field

(Glauber, 1963). In this case the A1g coherent phonon exci-

tation relates to an oscillation in the value of the structural

parameter z about a displaced average value which is set by

the level of electronic excitation created by the absorption of

the pump pulse. The frequency of this oscillation decreases

nearly linearly with increasing excitation fluence (Hase et al.,

2002). To explain these observations, models based on density

functional theory (DFT) have attempted to simulate the

dynamics by assuming that the absorption of the pump pulse

causes an increase in the number and energy of electronic

carriers, which suddenly alters the balance of the Peierls

instability that controls the equilibrium value of z (Murray et

al., 2005; Zijlstra et al., 2006). Ignoring all other phonon

coordinates, we can in principle describe the potential energy

of the crystal V as a function of the A1g coordinate z, subject to

some constraints on the excited electronic energy distribution.

Before the pump laser excites the sample, there is a local

minimum of VðzÞ at z = 0.2334, and the A1g mode frequency is

proportional to d2V=dz2. After excitation the carriers have a

different energy distribution, pushing the minimum of VðzÞ

closer to z = 0.25 and the mode frequency to lower values.

Assuming this change happens much faster than the new

vibrational period of the A1g mode, the result is a large-

amplitude oscillation of the atoms around the new minimum

of V(z) with the excited-state frequency. As the electronic

excitation relaxes either by transport or by transfer of energy

to other phonon modes, the quasi-equilibrium value of z will

more slowly relax back to its original value without producing

further oscillations. Instead this relaxation is seen in the data

as a slowly changing background.

While the above DFT-based models are a useful way of

thinking about the A1g excitation, this picture fails to predict

the generation of other coherent �-point modes of Eg

symmetry that have been measured in optical reflectivity

measurements on bismuth and similar materials (Hase et al.,

2002; Merlin, 1997) although Zijlstra et al. (2006) do discuss

the coupling of such a mode to the A1g coherent mode in the

context of their DFT model. This is because these models

ignore any coherence among excited carriers induced by the

laser interaction itself, instead treating the interaction as a

simple, incoherent redistribution of the energy of carriers

(Merlin, 2009). As a result, there is no mechanism in these

models for breaking the symmetry of the crystal. These

coherences may be treated mathematically via an extension of

the Raman tensor formalism normally applied to transparent

materials (Stevens et al., 2002). It is, however, not at present

clear how this can be incorporated into a first-principles

calculation.

2.2. Phonon squeezing

In addition to the changes in the quasi-equilibrium value of

z due to electronic excitation, some DFT calculations of

bismuth have predicted a ‘softening’ of optical and acoustic

phonon branches over a large subset of the Brillouin zone

(Murray et al., 2007). If this change of phonon frequency

happens on a timescale much faster than the period of these

vibrational modes, dynamics of the variance of the atomic

positions from their average values can result. Because these

dynamics can be understood with the same mathematical

treatment used in quantum optics to describe squeezed

photon number states, the term ‘phonon squeezing’ has been

used to describe this phenomenon (Garrett et al., 1996; Hu &

Nori, 1997; Johnson et al., 2009). In essence, these dynamics

are a simple consequence of any system described as a

harmonic oscillator where it is possible to make fast changes to

the vibrational frequency.

Fig. 1 shows a simple physical picture of what happens to

the coordinate distribution corresponding to the ground state

of a particular vibrational mode when the frequency of the

mode is suddenly decreased. Initially, the width of the prob-

ability distribution in the phonon coordinate is static in time,

corresponding to an eigenstate of a harmonic Hamiltonian

defined by the initial mode frequency. If at a time t = 0 we

suddenly change the frequency, the state of the system just

after t = 0 will not be an eigenstate and will therefore evolve in

time, resulting in changes to the width of the vibrational

coordinate distribution.
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More precisely, the Hamiltonian in the harmonic approx-

imation for the vibrational modes of a crystal can be written

ĤH ¼
P
ks

h- !ksðâa
y

ksâaks þ
1
2Þ; ð1Þ

where âa
y

ks and âaks are the creation and annihilation operators

for a phonon in the mode with wavevector k and branch index

s, and !ks is the mode frequency. For time-independent !ks,

this leads directly to the familiar result that any eigenstate of

the Hamiltonian can be described as a direct product of

eigenstates of the phonon-number operators n̂nks ¼ âa
y

ksâaks.

We assume that at an initial time teq the system is in

thermal equilibrium at a temperature T for an unperturbed

set of values for the mode frequencies !ð0Þks . We thus

describe the crystal as an admixture of phonon-number states

following a Bose–Einstein distribution function, such that the

average phonon number for a given mode is nks ¼

1=½expðh- !ð0Þks =kBTÞ � 1�, where kB is the Boltzmann constant.

Now suppose that at a time t0 > teq the mode frequencies

change suddenly: !ð0Þks ! !ð1Þks ¼ �ks!
ð0Þ
ks . Since the

frequencies have changed, the system is no longer in an

eigenstate of the Hamiltonian and will evolve in time.

To represent mathematically the evolution of the system we

will adopt the Heisenberg picture, where the time dependence

is given by the operators. Accordingly, we assume a form for

the time-dependent annihilation operator:

âaksðtÞ ¼
P

s0
½Ukss0 ðtÞâaks0 ðteqÞ þ V�kss0 ðtÞâa

y

�ks0 ðteqÞ�: ð2Þ

Using

dâaks=dt ¼ ði=h- Þ½ĤH; âaks� ð3Þ

and the fact that the frequencies change only at time t0, we can

partially solve for the functions Ukss0 ðtÞ and V�kss0 ðtÞ:

Ukss0 ¼

(
�ss0 exp½�i!ð0Þks ðt � t0Þ� for t< t0

Akss0 exp½�i!ð0Þks0 ðt � t0Þ� for t> t0

ð4Þ

V�kss0 ¼

(
0 for t< t0

Bkss0 exp½i!ð0Þks0 ðt � t0Þ� for t> t0

ð5Þ

where �ss0 is the Kronecker delta and we have chosen teq ! t0.

To determine the values of Akss0 and B�kss0 we need to

ensure the continuity at t0 of the position

ûu j
ðRÞ ¼

1

ðNÞ
1=2

X
ks

h-

2!ksðtÞ

� �1=2

ðâaks þ âa
y

�ksÞ"""
j
ks expðik � RÞ ð6Þ

and momentum

p̂p j
ðRÞ ¼ �

i

N1=2

X
ks

Mj h- !ksðtÞ

2

� �1=2

ðâaks � âa
y

�ksÞ"""
j
ks expðik � RÞ

ð7Þ

operators for each basis atom j in the unit cell at any lattice

position R, where the """j
ks are the normal-mode eigenvectors

and Mj is the atomic mass. For simplicity, we will assume these

eigenvectors are constant in time. The solution is then

Akss0 ¼
1

2

�ks þ 1

ð�ksÞ
1=2
�ss0 ; ð8Þ

Bkss0 ¼
1

2

�ks � 1

ð�ksÞ
1=2
�ss0 : ð9Þ

If the eigenvectors are not constant, the expressions for Akss0

and Bkss0 become more complicated and contain off-diagonal

terms that serve to ‘mix’ the phonon branches – see Johnson et

al. (2009) and Bartels et al. (2000) for details.

‘Phonon squeezing’ is concerned with the time dependence

of hQ̂QksQ̂Q�ksi, where Q̂Qks ¼ ½h
- =2!ksðtÞ�

1=2
ðâaks þ âa

y

�ksÞ is the

normal-mode coordinate operator. With the help of the

identity !ks ¼ !�ks, we find the solution

hQ̂QksQ̂Q�ksi

¼
h-

4!ð0Þks

1þ
1

�2
ks

� �
þ 1�

1

�2
ks

� �
cos 2�ks!

ð0Þ
ks ðt � t0Þ

� �
� ð2nks þ 1Þ: ð10Þ

The time dependence is characterized by an oscillation at

twice the frequency of the normal mode after excitation. This

oscillation in the quadrature of the normal-mode coordinate

(and its corresponding canonical momentum) is what is meant

here by ‘phonon squeezing’. Note that if we start with a

sufficiently cold crystal such that nks ! 0 it is possible

to use this effect to temporarily push hQ̂QksQ̂Q�ksi below the

zero-point motion ‘limit’ of h- =2!ks in a manner analogous to

vacuum-state squeezing of the electromagnetic field in

quantum optics.
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Figure 1
Wavepacket evolution of a squeezed state, depicting a squeezing of the
ground state of a single vibrational mode. (a) Initially, the state
corresponds to the ground state of a simple harmonic oscillator with
potential energy VðQÞ ¼ M!2=2 with mass M and frequency !. The
variance of the vibrational coordinate Q is hQ2i ¼ h- =2M!. (b) At a time t
= 0, the frequency of the oscillator suddenly decreases: !! !0 ¼ �!,
where �< 1. The wavepacket remains initially the same, but after t = 0 the
wavefunction does not correspond to an eigenstate of the potential and
starts with a variance in Q lower than that of the ground state of the
modified potential. (c) At a times 0< t<�=2!0, the wavepacket expands
in position space. (d) At t ¼ �=2!0 the variance hQ2i reaches a maximum
value of h- =2M�2!. Also at this time, the corresponding variance in the
momentum reaches a minimum. (e) At times between t ¼ �=2!0 and
t ¼ �=!0 the coordinate variance decreases. (f ) At t ¼ �=!0 the state
returns to the condition in panel (b) and the cycle repeats with angular
frequency 2!0.



2.3. Lattice heating

The foregoing discussion of phonon squeezing touched only

on structural dynamics arising from suddenly altering the

frequencies of vibrational modes. In addition to this, electron–

phonon scattering processes will transfer energy from the

highly excited electrons to the vibrational modes. Both these

effects result in a non-thermal energy distribution of phonons

which must eventually relax via anharmonic phonon–phonon

interactions. Insofar as these interactions involve q ¼ 0

acoustic modes, these interactions will lead to an average

strain. The timescale for phonon equilibration is difficult to

estimate from current data, but it is known that the coherent

A1g mode decays on timescales ranging from about 1–10 ps,

depending on the excitation fluence and crystal temperature

(Hase et al., 2002; Misochko et al., 2006). This suggests that

attempting to define a ‘lattice temperature’ on these time-

scales is problematic, and effects from a non-Bose–Einstein

distribution of phonons may be important.

3. Elements of femtosecond X-ray diffraction

3.1. Probe depth: absorption and extinction

In a grazing-incidence geometry, where the incidence angle

is only slightly larger than the critical angle for total external

reflection, the effective probe depth of X-ray diffraction is

controlled by two physically distinct mechanisms: absorption

and extinction. The relative importance of these mechanisms

depends in general on the intrinsic properties of the crystal,

the efficiency of the particular diffraction peak under inves-

tigation, the angle of incidence for the X-rays, and the size and

distribution of individual domains in the crystal.

We first consider the situation depicted in Fig. 2, where a

monochromatic X-ray beam with frequency ! incident from

vacuum enters the planar surface of a semi-infinite, perfect

crystal with a dielectric susceptibility �0. The susceptibility �0

is a complex number related to the electron density �e and the

X-ray absorption coefficient � by

�0 ¼ �
0
0 þ i�000 ¼ �

4�re

k2
�e þ i

2�

k
; ð11Þ

where k ¼ !=c is the magnitude of the incident wavevector, c

is the speed of light in vacuum and re is the classical electron

radius. We assume that the geometry of the crystal and beam

are such that exactly one set of crystal planes with reciprocal-

lattice vector G nearly satisfy the Bragg condition, and that

the grazing-incidence angle �0 is small but the exit angle �G of

the diffracted beam is large compared to the critical angle for

external reflection �c ¼ ð�
0
0Þ

1=2. The electric field outside the

crystal ðx< 0Þ at a time t is

Evðr; tÞ ¼
�

E0 expðik	0xÞ þ Es expð�ik	0xÞ
� �

expðikjj � rjjÞ

þ EG expðik	GxÞ exp½iðkþGÞjj � rjj�
	

expð�i!tÞ;

ð12Þ

where k is the incident wavevector, 	0 ¼ sin �0, 	G ¼ � sin�G

and the subscript jj denotes the projection of a vector onto the

x ¼ 0 plane. The vector E0 represents the amplitude and

polarization of the incident beam, while Es is the specular

reflected beam and EG is the diffracted beam that exits the

crystal. The value of 	G (and therefore �G) is set by the

condition that the magnitude of the wavevector for the

diffracted beam is the same as for the incident beam:

	G ¼ �½ð	0 �  Þ
2
þ 
�1=2; ð13Þ

where


 ¼ 4 sin �Bðsin �B � cos � cos � cos�0 � sin � sin �0Þ ð14Þ

is the deviation from the Bragg condition,  ¼ 2 sin �B sin �, �B

is the Bragg angle, � is the angle between G and the surface,

and � is the angle between the projection of G onto the

surface and the negative y axis. Inside the crystal the fields are

Dðr; tÞ ¼
�

D0 expðikuxÞ expðikjj � rjjÞ

þDG exp½ikðu�  Þx� exp½iðkþGÞjj � rjj�
	

expð�i!tÞ:

ð15Þ

Here the D0 term is a wave going deeper into the crystal and

the DG term is the diffracted wave that moves back toward the

surface. As shown by Aleksandrov et al. (1984), the possible

values for the quantity u are determined by roots of the cubic

dispersion equation

ðu2 � 	0
2 � �0Þ½u�  þ ð	G

2 þ �0Þ
1=2
� ¼

P2�G�G

2j	Gj
ð16Þ

where �G and �G are the Fourier components of the

susceptibility for G and �G, respectively, and P = 1 for 
polarization and P ¼ cos 2�B for � polarization. In general

equation (16) yields three possible values for u, one with

Im½u�> 0 and two with Im½u�< 0. The latter two roots, when

inserted into equation (15), correspond to waves that grow

exponentially with depth into the crystal. Since these are

unphysical, we discard them and we are left with only one

possibility for u. The distance from the surface L where the

fields inside the crystal are attenuated by a factor of 1/e is then

simply L ¼ 1=kIm½u�.
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Figure 2
Schematic of the X-ray diffraction geometry for non-coplanar grazing
incidence from lattice planes with reciprocal-lattice vector G. The
incident beam (E0) enters the sample at a glancing angle �0, and two
beams leave the surface: a specular reflected beam (Es) and a diffracted
beam (EG).



To isolate the effect of photoabsorption on L, we take the

limit j�Gj ! 0 so as to make the effect of extinction negligible.

In this case equation (16) is easily factored, and the roots are

u1;2 ¼ �ð	0
2
þ �0Þ

1=2; ð17Þ

u3 ¼  � ð	G
2
þ �0Þ

1=2: ð18Þ

Of these, only u1 has a positive imaginary component. Thus,

Labs ¼
1

kIm½u1�
¼

1

k

2

�	2
0 � �

0
0 þ ð	

2
0 þ �

0
0Þ

2
þ ð�000Þ

2
� �1=2

 !1=2

ð19Þ

is the contribution of photoabsorption to the attenuation of

the wavefield inside the crystal. Note that this depends only on

the X-ray wavelength, the incidence angle and �0.

In our experiments the orientation of G is non-collinear

with n, making it possible to use a rotation � about the sample

normal to adjust the angle between the incident beam and

the lattice planes. Fig. 3 shows the dependence of L on

�� ¼ �� �B for the (111) planes in a single crystal of bismuth

with a (311) surface, where �B is the value of � where the

diffraction is maximized. Here we keep �0 = 0.5�. Although

under these conditions L does not vary strongly across the

diffraction peak, there is a noticeable minimum near the

conditions of highest diffraction efficiency. This is the contri-

bution of extinction to the penetration depth, where the

diffracted beam acts to attenuate the incoming beam. Inter-

estingly, the behavior of L is asymmetric, and even has a small

maximum at �� = 0.2�. This asymmetry is a consequence of

small differences in the effective absorption coefficient seen

by the small standing wave component of the field inside the

crystal that shifts phase across the �-scan (Batterman & Cole,

1964). Fig. 4 shows both the minimum value of the penetration

depth Lmin and Labs as a function of incidence angle �0. At low

values of �0 these are very close and extinction may be

neglected altogether in order to simplify analysis.

3.2. Dynamics of the reciprocal lattice: coherent acoustic
phonons

Acoustic phonons describe the low-energy structural exci-

tations of a crystal lattice with a frequency depending nearly

linearly on the crystal momentum q as jqj ! 0. As shown by

Thomsen et al. (1986) for picosecond laser heating, an

instantaneous increase in isotropic stress near the surface will

result in a strain wave (coherent longitudinal acoustic

phonons) due to the elastic response of the material. This

strain wave starts at the surface and moves into the crystal at a

the speed of sound v. Non-isotropic stresses or elastic tensors

may also induce coherent transverse acoustic strain.

In terms of the structure of the crystal, low-wavevector

coherent acoustic modes cause local changes in the reciprocal

lattice of the crystal. In the formalism of the preceding section,

this is equivalent to changes in the reciprocal-lattice vector G

for various diffraction planes. In our diffraction experiment, it

is possible to track spatially averaged changes in the

reciprocal-lattice vector G by measuring time-dependent

changes in the direction of the diffracted beam kG and/or the

diffraction efficiency as a function of sample rotation angle �.

Assuming the transverse length scales of the sample and

excitation are large (>100 mm), the relevant timescale for

changes in G is set by the smaller of the X-ray probe depth L

and the laser excitation depth Lex; for a 20 nm depth, the

relevant timescale would be 10 ps for v’ 2000 m s�1. At times

significantly earlier than this, we expect little change in G over

the probed volume.
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Figure 3
Calculated X-ray diffraction efficiency (a) and field penetration depth L
(b) for the (111) Bragg reflection in (311)-oriented Bi as a function of
rotation angle �� about the surface normal, for an incidence angle �0 =
0.5�. Only the results for the -polarized component are shown. The
results for � polarization are qualitatively similar but show smaller
changes in L due to the lower value of the polarization factor P.

Figure 4
The minimum field penetration depth Lmin for the (111) reflection and the
field penetration depth Labs far from a Bragg reflection in (311)-oriented
Bi as a function of incidence angle �0. As in Fig. 3, only the results for the
-polarized component are shown.



3.3. Dynamics of the diffracted intensity: coherent optical
phonons and disorder

The intensity of the diffracted beam in equation (12) can be

determined in the usual way by solving for boundary condi-

tions at the crystal surface. As shown by Aleksandrov et al.

(1984), for our geometry the result is

IG ¼ �
	0

	G

�G

ðuþ 	0Þðu�  � 	GÞ












2

; ð20Þ

where we recall that 	G ¼ � sin �G < 0. If we assume that u

does not depend strongly on �G (equivalent to assuming

L ’ Labs), the diffracted intensity is proportional to j�Gj
2 as it

is in the simple kinematic theory of diffraction. Under the

assumption that the electronic density is localized at the

positions of the basis atoms of the unit cell, we can write

�G ¼
4�re

k2V
SG; ð21Þ

where V is the unit-cell volume and the structure factor

SG ¼
P

j

fj expðirj �GÞ exp½�hðûu j �GÞ2i=2� ð22Þ

depends on the atomic form factor fj and the relative

position rj of the jth basis atom in the crystal unit cell. The

Debye–Waller term exp½�hðûu j �GÞ2i=2� expresses the

decrease in SG due to incoherent atomic vibrations in the

direction of G.

Time-dependent changes in SG due to spatially homo-

geneous structural dynamics in the crystal can enter through

the basis-atom positions rj (coherent optical phonons) and/or

through the Debye–Waller factor. In the specific case of the

bismuth structure with two identical basis atoms, we can

simplify equation (22) to

SG ¼ 2f cosðr �GÞ exp½�hðûu �GÞ2i=2�; ð23Þ

where f ¼ f1 ¼ f2, hðûu �GÞ2i ¼ hðûu1 �GÞ2i ¼ hðûu2 �GÞ2i and

r ¼ r1 ¼ �r2.

Under the ‘kinematic’ assumption L ’ Labs, we can then

approximate the diffracted intensity as

IG ’ I
ð0Þ
G

cos2ðr �GÞ

cos2ðr0 �GÞ
exp½��hðûu �GÞ2i�; ð24Þ

where I
ð0Þ
G is the initial intensity and r0 is the initial value of r.

For the (111) Bragg reflection, r �G ¼ 6�z, and so the

coherent dynamics of the A1g mode lead to a response in IG.

This is also true for the higher-order (222) planes where

r �G ¼ 12�z. For planes perpendicular to (111), the intensity

is sensitive to impulsively stimulated Eg coherent modes only

to second order in r� r0, since r0 �G ¼ 0. Diffraction from

these planes is therefore relatively more sensitive to changes

in the Debye–Waller factor.

4. Experimental description

The experimental setup for performing grazing-incidence

femtosecond X-ray diffraction consists of several components.

The sample is a single crystal of bismuth, with a surface normal

along the [311] direction (in rhombohedral coordinates). To

excite the sample, we use the output from a commercially

available Ti:Al2O3-based regenerative amplifier (800 nm,

115 fs, 1 kHz) focused to an elliptical spot with dimensions 750

� 4000 mm at a 10� grazing-incidence angle. The polarization

of the pump beam was p-polarized to maximize absorption in

the sample.

To probe the X-ray diffraction from the excited sample, we

generate 140� 30 fs duration X-rays from a synchrotron using

the electron-beam slicing method (Schoenlein et al., 2000;

Beaud et al., 2007). Briefly, a regenerative-amplifier-based

laser system creates 50 fs duration pulses of light with wave-

length 800 nm at a rate of 2 kHz synchronized to both the

synchrotron storage ring and to the pump laser. These pulses

are timed to co-propagate with the electron beam as it passes

through a wiggler tuned to near resonance with the frequency

of the laser field. This causes an energy modulation of a short

time ‘slice’ of the electron beam, which is subsequently

separated from the other electrons by energy-dispersive

electron optics. This separated slice of electrons then gener-

ates X-rays when passing through an in-vacuum undulator.

These X-rays are first collimated vertically and brought to a

weak 250 mm focus at the sample position by a grazing-

incidence toroidal mirror. Approximately 30 cm before the

sample, a single elliptically bent mirror focuses the beam

vertically to a size of 7 mm at the sample position. An Mo/B4C

multilayer mirror then deflects the beam horizontally just

before the beam hits the sample, serving to weakly mono-

chromatize the X-rays at a phonon energy of 7.1 keV and a

bandwidth of 1.3%.

The incidence angle of the X-rays on the sample is

measured by monitoring the deflection of the specular

component of the surface reflection of X-rays from the sample.

The diffracted X-rays are detected using a large-area 10 �

10 mm avalanche photodiode (APD) with a stack of three

25 mm Be windows in place to block contributions from pump

laser scatter. The current from the APD is then sent through a

fast transimpedance amplifier to a gated voltage integrator.

The integrated APD current from each sliced X-ray pulse

(arrival rate 2 kHz) is individually measured and stored. Note

that since the X-rays arrive at twice the repetition rate of the

pump laser, the measurements alternate between taking

measurements of the excited and unexcited samples, provided

the sample relaxes within 500 ms. This allows us to normalize

out sources of noise connected with slower timescale fluc-

tuations in the slicing interaction. In addition, we also measure

and store the integrated signal at one synchrotron round trip

(960 ns) earlier than the arrival of the sliced beam. This signal

serves as a measure of the ‘halo’ of incompletely relaxed

electrons in the storage ring that has been created by previous

interactions with the slicing laser (Holldack et al., 2006; Beaud

et al., 2007). This halo contribution leads to a roughly 70 ps

full-width-at-half-maximum (FWHM) background to the

slicing signal with an integrated intensity of approximately

10% of the total measured signal. For the very short timescale

data (<5 ps) the halo contribution to the pump-probe signal is

approximately constant and we can simply subtract it out; for
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longer timescales, however, this background does contribute

to the measured data.

5. Results

The experimental results are most easily divided into two

parts, differentiated primarily by timescale. What we will call

‘fast dynamics’ on times earlier than about 3 ps reflect beha-

vior in the regime where the strain and volume are constant,

and the sample is far from local thermal equilibrium. The ‘slow

dynamics’ show the onset of strain and thermalization,

followed by thermal diffusion that drives the near-surface

temperature back down to its original value.

5.1. Short timescale behavior: A1g and Debye–Waller
dynamics

Fig. 5 shows the time dependence of the diffracted intensity

over 5 ps from the (111), (222) and ð101Þ lattice planes for an

absorbed excitation fluence of 1.4� 0.3 mJ cm�2 and an X-ray

incidence angle of 0.45�. The halo contribution has been

assumed to be constant and is subtracted out from these data.

Oscillations from the coherently excited A1g mode are clearly

visible in the (111) and (222) data. In addition, we see an

overall drop in the diffracted intensity for the ð101Þ data that

we can attribute to the Debye–Waller factor. Using equation

(24) we can extract from these data the dynamics of z and

hðûu � hÞ2i for h ¼ G=jGj. Figs. 6 and 7 show the results of this

decomposition. Note that previous work (Beaud et al., 2007;

Johnson et al., 2008) has inferred z dynamics by assuming that

the Debye–Waller contribution to the (111) data is negligible.

As shown quantitatively here, this assumption is justified since

the magnitude of G for these planes is quite small, leading to

an overall error in �z of the order of just 5%. The current

treatment, however, has the advantage of being able to extract

quantitative information on the dynamics of the variance in

the [111] direction.

From Fig. 6, the dynamics of z show the displacive excita-

tion of the A1g mode caused by an electronically induced shift

in zeq, the quasi-equilibrium value of z. The solid line shows a

fit to a simple model of displacive excitation where we assume

a constant phonon frequency, a linear damping coefficient and

an exponential relaxation of zeq back to its original value

(Zeiger et al., 1992). As with all the model calculations shown

here, the curve has been convoluted with a Gaussian with

200 fs FWHM to take the time resolution into account. The fit

gives a frequency of 2.51 � 0.03 THz, an oscillation damping

time �osc = 0.79 � 0.14 ps, and a zeq relaxation time of � = 2.94

� 0.09 ps.

Since DFT calculations have indicated that the value of zeq

is approximately linear with the excited carrier density

(averaged over one cycle of oscillation), we can take the value

of � as an estimate of the time for the average number of

excited carriers to decay. This decay in the average number of

carriers is likely to be due to a combination of carrier diffusion

(which moves carriers deeper into the crystal) and transfer of

electronic energy to the vibrational modes via incoherent

electron–phonon interactions. A more detailed study

(Johnson et al., 2008) of the behavior of z over this time

interval for a slightly lower absorbed fluence of 1.1 mJ cm�2

was able to use measurements at different X-ray incidence to

obtain depth resolution, giving the ability to distinguish

between losses from carrier transport and from energy

transfer to the lattice. Based on a fit to a somewhat compli-

cated model of carrier–carrier and carrier–phonon inter-

actions, this work estimated an effective diffusion coefficient

D = 2.3 � 0.3 cm2 s�1 and an electronic energy decay time of

�el = 7.6 � 0.6 ps. For deep probe depths these data also

indicate an increase in zeq over the first oscillation cycle, which

was interpreted as carrier–carrier interaction that acted to

increase the number of carriers in the crystal over this time
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Figure 5
Normalized diffraction from the (111), (222) and ð101Þ planes as a
function of time after laser excitation. The solid lines show the results of
the fits discussed in the text.

Figure 6
Dynamics of the atomic position parameter z extracted from the data
shown in Fig. 5. The solid line is the result of a fit to a simple model of
displacive excitation with a constant phonon frequency, as discussed in
the text.



frame, possibly due to impact ionization. Although this

interpretation should be confirmed with a more direct

measurement of the time dependence of the carrier distribu-

tion, it is intriguing. This increase in zeq is not normally

observed in optical reflectivity experiments since near the

surface it appears to be at least partially cancelled by carrier

diffusion.

The dynamics of hðûu � hÞ2i in Fig. 7 in both directions show a

prompt increase in the atomic disorder after excitation,

followed by a much slower, nearly linear increase. There is no

large quantitative difference between the two directions from

our data. As a supplement to these data, Fig. 8 shows some-

what higher quality data for the ½112� direction taken in a

vacuum sample environment at a similar fluence level at two

different initial sample temperatures (Johnson et al., 2009).

The data set at room temperature shows clear evidence of

phonon squeezing as discussed in x2.2, appearing as a small,

quickly damped oscillation with a period of approximately

750 fs that accompanies the initial increase.

In terms of the theory developed in x2.2, we can calculate

(under the simplifying assumption of constant eigenvectors)

the direction-projected atomic variance

hðûu
j
� hÞ2i ¼ ð1=NÞ

P
ks

hQksQ�ksij"""
j
ks � hj

2: ð25Þ

As equation (25) shows, the atomic variance along a particular

direction is the sum of phonon-squeezing contributions from

all different vibrational modes. The fact that many different

frequencies contribute to the measured signal explains the fast

damping of the observed oscillations. As a very simple, first-

order approximation of the effects of electronic excitation on

the phonon dispersion, we will assume that �ks ¼ � is inde-

pendent of the phonon wavevector k and branch s. By using

the ground-state DFT calculations from Murray et al. (2007) to

get the eigenvectors and initial frequencies, we use equation

(25) to fit to the data, varying � as a fit parameter. In order to

fit the nearly linear, slow increase in the atomic variance at

later times we have added to this model a term of the form bt,

where we also allow the slope b to vary as a fit parameter. The

solid lines in Figs. 7 and 8 show the results of the fit, where we

have forced use of the same parameters to describe the [111]

and ½101� directions since these data sets share the same

excitation level. The data in Fig. 7 are fitted well by � = 0.858�

0.004 and b = (4.5 � 0.5) � 10�4 Å2 ps�1, whereas the data of

Fig. 8 yield � = 0.8793 � 0.0013 and b = (8.0 � 0.2) �

10�4 Å2 ps�1 for T = 300 K and � = 0.889 � 0.003 and b = (7.4

� 0.4) � 10�4 Å2 ps�1 for T = 170 K. The fit parameters are

quite similar, suggesting that the relevant vibrational-mode

frequencies soften (decrease) at these excitation fluences by

about 11–14%.

5.2. Heating and lattice strain: long timescale behavior

Over longer timescales, the development of strain from

coherent acoustic phonons leads to a change in G and a

corresponding shift in the value of �B. To measure this, we

performed �-scans of the diffraction efficiency at room

temperature for the (111) and ð112Þ reflections at different

fixed pump-probe delay times of 3, 6.4 and 35 ps, as well as

scans of the pump-probe delay at three different values of � at

and around the exact Bragg condition. For all these

measurements the X-ray incidence angle was fixed at �0 = 0.5�

and the absorbed laser fluence was 1.2 � 0.2 mJ cm�2. Owing

to the large bandwidth of the X-rays, we observed that for a

given reflection the shape of the intensity profile as a function

of � was unchanged for different pump-probe delay times,

with only the overall intensity and shift of the Voigt-shape

profile changing with the delay time. Using equation (14) we

can determine �B in terms of �B and the angle � between G

and the surface:
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Figure 8
Dynamics of the atomic variance projected along the ½112� direction from
a different experimental run (Johnson et al., 2009) at two different
temperatures: 300 and 170 K. The solid lines are the result of the fit
discussed in the text.

Figure 7
Dynamics of the atomic variance projected along the [111] and ½101�
directions extracted from the data shown in Fig. 5. The solid line is the
result of the fit discussed in the text.



cos�B ¼
sin �B � sin � sin �0

cos � cos �0

: ð26Þ

If we assume that the elastic properties of bismuth are

isotropic, by symmetry we can argue that the lattice strain

should affect only the component of G normal to the surface.

In reality, the elastic properties of bismuth at room tempera-

ture are not isotropic: for example, the difference in long-

itudinal sound velocities ranges from 1.97 km s�1 along the

[111] direction to about 2.55 km s�1 in the plane perpendicular

to [111] (Eckstein, 1960). These velocities are, however, rela-

tively similar, so we proceed with an approximation of

isotropy while keeping in mind that there may be small non-

normal changes in G due to the anisotropy of the elastic

tensor.

Let n be the surface normal of the crystal. Taking

� ¼ ð�G � nÞ=ðG � nÞ as the normal component of lattice strain

averaged over the probe depth, from equation (26) we obtain

d�

d�B

¼ �
sin�B

sin �B tan �ð1þ sin �Þ
; ð27Þ

which relates small shifts in �B to � for an assumed homo-

geneous probe volume. Fig. 9 shows the results of calculating �
as a function of time, based on a fit of the measured � profile

shape to the three values of � used in the pump-probe delay

scans. This analysis gives only an approximation of � and may

be inaccurate at times when the strain is highly inhomoge-

neous. For both reflections there is no measurable change in �
until after 5 ps. There is an increase in strain at 5–20 ps that is

likely to correspond to a strain wave moving across the probe

depth, followed by a slower relaxation out to beyond 200 ps

that is probably due to a cooling of the lattice from thermal

diffusion. For both reflections the calculated strain is quanti-

tatively similar. The precise timescale of the increase in strain

may be affected by the assumption of homogeneity in deriving

equation (27); a more accurate analysis would require addi-

tional data and calculation of the diffracted intensity directly

from a parameterized model of the strain wave.

We can also extract from the fits the long-time behavior of

the integrated intensity of diffraction from each reflection.

Because the small magnitude of the (111) reciprocal-lattice

vector makes diffraction from these planes relatively insensi-

tive to the Debye–Waller factor, the (111) data show a nearly

complete recovery of the initial intensity after about 20 ps. For

the ð112Þ data we have transformed this into the time

dependence of hðûu �GÞ2i, shown in Fig. 10. We see at very early

times the fast increase from the softening of the phonon

frequencies, followed by a steady increase in the variance until

about 10 ps, when the variance begins to decrease again and

relax to its initial value sometime after the window of the

measurement. This decrease is probably again due to diffusion

of vibrational energy away from the probe volume. Although

the crystal may not be in true thermodynamic equilibrium at

the peak time of 10 ps, it is possible to estimate an ‘effective’

temperature assuming this is the case. Since the starting

temperature is well above the Debye temperature of 120 K,

the variance will scale linearly with temperature. Using a value

of 0.0143 Å2 as the equilibrium value at 300 K (Narayana &

Krishna, 2005), the observed 0.005 Å2 increase would corre-

spond to a temperature increase of approximately 100 K.

As a check of consistency, we can try to use this value of the

effective temperature to calculate the corresponding normal

strain. Since the strain forms dynamically in response to the

stress as a strain wave that begins at the crystal surface, we

would expect a delay of the strain response of the order of L/v

= 13 ps, where L = 30 nm is the probe depth and v =
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Figure 10
Long timescale behavior of hðûu �GÞ2i for the ½112� direction at 300 K,
extracted from diffraction measurements at three different values of
sample rotation �.

Figure 9
Normal component of the lattice strain estimated from the changes in �B

determined from a fit to diffraction measurements at three different
values of the sample rotation �. The data shown in (a) are extracted from
the ð112Þ reflection and the data in (b) are from the (111) reflection. The
insets show the diffracted intensity as a function of �� at 3 ps for each
reflection. The calculation of the strain assumes the strain is homo-
geneous and approximates the elastic properties of bismuth as isotropic;
corrections for these assumptions may alter the shape of the initial rise
and explain the small differences between the curves.



2.35 km s�1 is the longitudinal sound velocity averaged over

all directions. On timescales exceeding the time for such a

strain wave to propagate across the probe depth, the normal

strain resulting from such a temperature increase can be

estimated (Thomsen et al., 1986) as

� ¼
B��T

�v2
; ð28Þ

where � = 9.8 g cm�3 is the density, B = 33 GPa is the bulk

modulus (Eckstein, 1960) and � = 4.0 � 10�5 K�1 is the

volume thermal expansion coefficient (White, 1972). With �T

= 100 K we obtain a value of � ¼ 0:0024 which is close to the

peak values in Fig. 9 at around 20 ps, delayed from the peak in

Fig. 10 by about L/v. The overall magnitude of the strain

derived from the data thus seems consistent with that of the

atomic position variance. This, however, does not necessarily

imply that the system is indeed in thermal equilibrium, since

there is no way to know from these data how the energy in the

phonon modes is actually distributed.

6. Conclusions

Sudden high-level excitation of bismuth results in a multitude

of structural responses. First, the electronic excitation itself

causes significant changes in the interatomic potential surface.

This results in the generation of an A1g coherent phonon and

in ‘squeezing’ dynamics of the atomic variance due to a sudden

change in frequency of the vibrational modes. These effects of

vibrational-mode softening appear from the existing data to

produce changes in the atomic position variance of approxi-

mately equal magnitude in all the directions probed, which is

consistent with an average frequency decrease of 11–14% for

the excitation fluences we have applied.

At later times, electron transport acts to move carrier

energy away from the probed volume, and simultaneously

electron–phonon scattering transfers energy from the carriers

to the vibrational modes on a timescale of about 7.6 ps. This

leads to an increase in the energy available in the vibrational

modes, which tends to increase the atomic position variance,

but at the same time the re-hardening of the vibrational

frequencies counteracts this to some extent. In addition,

phonon–phonon interactions, which are necessary to establish

thermodynamic equilibrium within the lattice, must also act to

redistribute energy among the modes. Because measurements

of the Debye–Waller factor from X-ray data offer only an

average over all phonon modes, these measurements are not

well suited to determine unambiguously whether the ‘lattice

temperature’ is a well defined parameter at a particular time

after excitation. One very interesting possibility for addressing

this deficiency is to perform femtosecond time-resolved

measurements of diffuse scattering away from Bragg reflec-

tions, which offers sensitivity to phonon momentum

(Lindenberg et al., 2008). Such measurements, possible only

with the high fluxes to be available from linear-accelerator-

based sources, offer the potential to more rigorously test

models of electronically induced phonon softening and to

measure the timescales on which local thermodynamic equi-

librium of the lattice is achieved.

These experiments were performed on the X05LA beam-

line at the Swiss Light Source, Paul Scherrer Institut, Villigen,

Switzerland. We thank D. Grolimund and C. Borca for

outstanding assistance during experiments.
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